Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
BMC Infect Dis ; 23(1): 852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053032

RESUMO

BACKGROUND: Motor neuron disease (MND) is a fatal neurodegenerative disorder that leads to progressive loss of motor neurons. Chlamydia psittaci (C. psittaci) is a rare etiology of community-acquired pneumonia characterized primarily by respiratory distress. We reported a case of C. psittaci pneumonia complicated with motor neuron disease (MND). CASE PRESENTATION: A 74-year-old male was referred to the Shaoxing Second Hospital at January, 2022 complaining of fever and fatigue for 2 days. The patient was diagnosed of MND with flail arm syndrome 1 year ago. The metagenomic next-generation sequencing (mNGS) of sputum obtained through bedside fiberoptic bronchoscopy showed C. psittaci infection. Then doxycycline was administrated and bedside fiberoptic bronchoscopy was performed to assist with sputum excretion. Computed Tomography (CT) and fiberoptic bronchoscopy revealed a significant decrease in sputum production. On day 24 after admission, the patient was discharged with slight dyspnea, limited exercise tolerance. One month later after discharge, the patient reported normal respiratory function, and chest CT showed significant absorption of sputum. CONCLUSIONS: The mNGS combined with bedside fiberoptic bronchoscopy could timely detect C. psittaci infection. Bedside fiberoptic bronchoscopy along with antibiotic therapy may be effective for C. psittaci treatment.


Assuntos
Chlamydophila psittaci , Doença dos Neurônios Motores , Pneumonia , Psitacose , Masculino , Humanos , Idoso , Psitacose/complicações , Psitacose/diagnóstico , Psitacose/tratamento farmacológico , Brônquios , Doença dos Neurônios Motores/complicações , Doença dos Neurônios Motores/diagnóstico , Dispneia
2.
Bioresour Technol ; 387: 129702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604256

RESUMO

This study proposes a new model in which ethanol and acetate produced by dark fermentation are processed by Clostridium kluyveri for chain elongation to produce caproate with an addition of biochar prepared from cornstalk residues after acid pretreatment and enzymatic hydrolysis (AERBC) in the dark fermentation and chain elongation processes. The results show a 6-25% increase in hydrogen production in dark fermentation with adding AERBC, and the maximum concentration of caproate in the new model reached 1740 mg/L, 61% higher than that in the control group. In addition, caproate was obtained by dark fermentation, using liquid metabolites as substrates with an initial pH range of 6.5-7.5. Finally, the electron balance and electron transfer efficiency in the new model were analyzed, and the role of AERBC in dark fermentation and chain elongation was investigated. This study provides a new reference for the use of dark-fermented liquid metabolites and cornstalk residue.


Assuntos
Caproatos , Clostridium kluyveri , Hidrogênio
3.
J Hazard Mater ; 452: 131343, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027910

RESUMO

The mechanism of removing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by persulfate was attributed to the generation of reactive oxygen species (ROS). However, the potential contribution of decreased pH in persulfate system to ARB and ARGs removal has rarely been reported. Here, the efficiency and mechanism of removing ARB and ARGs by nanoscale zero-valent iron activated persulfate (nZVI/PS) were investigated. Results showed that the ARB (2 × 108 CFU/mL) could be completely inactivated within 5 min, and the removal efficiencies of sul1 and intI1 were 98.95% and 99.64% by nZVI/20 mM PS, respectively. Investigation of mechanism revealed that hydroxyl radicals was the dominant ROS of nZVI/PS in removing ARB and ARGs. Importantly, the pH of nZVI/PS system was greatly decreased, even to 2.9 in nZVI/20 mM PS system. Impressively, when the pH of the bacterial suspension was adjusted to 2.9, the removal efficiency of ARB, sul1 and intI1 were 60.33%, 73.76% and 71.51% within 30 min, respectively. Further excitation-emission-matrix analysis confirmed that decreased pH contributed to ARB damage. The above results on the effect of pH indicated that the decreased pH of nZVI/PS system also made an important contribution for the removal of ARB and ARGs.


Assuntos
Ferro , Poluentes Químicos da Água , Espécies Reativas de Oxigênio , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
4.
Microorganisms ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838439

RESUMO

This study evaluated the feasibility of continuous biohythane production from rice straw (RS) using an integrated anaerobic bioreactor (IABR) at thermophilic conditions. NaOH/Urea solution was employed as a pretreatment method to enhance and improve biohythane production. Results showed that the maximum specific biohythane yield was 612.5 mL/g VS, including 104.1 mL/g VS for H2 and 508.4 mL/g VS for CH4, which was 31.3% higher than the control RS operation stage. The maximum total chemical oxygen demand (COD) removal stabilized at about 86.8%. COD distribution results indicated that 2% of the total COD (in the feed) was converted into H2, 85.4% was converted to CH4, and 12.6% was retained in the effluent. Furthermore, carbon distribution analysis demonstrated that H2 production only diverted a small part of carbon, and most of the carbon flowed to the CH4 fermentation process. Upon further energy conversion analysis, the maximum value was 166.7%, 31.7 times and 12.8% higher than a single H2 and CH4 production process. This study provides a new perspective on lignocellulose-to-biofuel recovery.

5.
Environ Res ; 221: 115259, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634894

RESUMO

The accurate and reliable prediction of chlorophyll-a (Chl-a) concentration is of great significance in reservoir environment management and pollution control. To improve the accuracy of Chl-a index prediction, a novel hybrid water quality prediction method was proposed for gated recurrent unit (GRU) neural network based on particle swarm algorithm optimized variational modal decomposition (PV-GRU). The results showed that the variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) in this study effectively reduced the non-smooth of water quality data. In addition, the GRU neural network reduced the risk of overfitting the deep-learning model with small sample data. Overall, the PV-GRU prediction model exhibited significant superiority in predicting non-smooth and non-linear Chl-a sequences with a relatively small sample size. The prediction errors of PV-GRU model were all less than those of other comparative models, and the fitting determination coefficient R2 was 94.21%. These results indicated that the proposed PV-GRU model can effectively predict the content of Chl-a in reservoirs, which provides an alternative new method for water quality prediction to prevent and control eutrophication in reservoirs.


Assuntos
Algoritmos , Clorofila , Clorofila A , Redes Neurais de Computação , Qualidade da Água
6.
J Fish Dis ; 46(2): 165-176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423261

RESUMO

The infectious spleen and kidney necrosis virus (ISKNV) is a highly lethal virus, which has brought significant losses to aquaculture. Therefore, a new vaccine against ISKNV with high efficiency, safety and convenience must be developed. While baculoviruses are more commonly used as protein expression systems for vaccine antigen production, this paper used baculovirus technology to develop a live-vector vaccine, BacMCP, which contains the coding sequence of the major capsid protein (MCP) (GenBank accession no. AF371960) of ISKNV and is driven by a CMV promoter. Real-time PCR and immunofluorescence showed that the MCP gene was successfully delivered to and expressed in fish cells and tissues inoculated with BacMCP. Immune-related gene (IgM, TGF-ß, IL-1, IL-8, TNF-α) expression was induced in BacMCP-treated groups of largemouth bass compared with control groups. Specific antibodies could be detected in the serum of BacMCP injection-vaccinated largemouth bass by ELISA. After injection or immersion vaccination with BacMCP for 21 days, largemouth bass were infected with ISKNV. The immune effect of the injected immunization on fish in different sizes was evaluated. The vaccine efficacy of injection-vaccinated bass was 100% in small bass and 85.7% in large bass. The vaccine efficacy of immersion-vaccinated small bass was 77.3%. This study suggested that BacMCP can be used as a vector-based vaccine candidate to prevent the diseases caused by ISKNV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Vacinas Virais , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Vacinas Sintéticas , Proteínas do Capsídeo/genética , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária
7.
Microorganisms ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144450

RESUMO

This study developed a practical recovery for potato starch by-products by A. niger and applied it on a plant scale to completely solve the pollution problems. Soughing to evaluate the effect of A. niger applied towards the production of by-products recycling and analyze the composition and characteristics of flocculating substances (FS) by A. niger and advance a possible flocculation mechanism for by-product conversion. After fermentation, the chemical oxygen demand (COD) removal rate, and the conversion rates of cellulose, hemicellulose, pectin, and proteins were 58.85%, 40.19%, 53.29%, 50.14%, and 37.09%, respectively. FS was predominantly composed of proteins (45.55%, w/w) and polysaccharides (28.07%, w/w), with two molecular weight distributions of 7.3792 × 106 Da and 1.7741 × 106 Da and temperature sensitivity. Flocculation was mainly through bridging and ionic bonding, furthermore, sweeping effects may occur during sediment. Flocculation was related to by-products conversion. However, due to severe pollution problems and resource waste, and deficiencies of existing recovery technologies, converting potato starch by-products via A. niger liquid fermentation merits significant consideration.

8.
Microbiol Spectr ; 10(4): e0094322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35770986

RESUMO

Cyprinid herpesvirus 2 (CyHV-2) has caused great losses to the gibel carp (Carassius auratus gibelio) industry. Previous studies showed that certain DNA viruses can encode circular RNAs (circRNAs) to regulate virus infection, which provides new clues for the treatment of viral disease. Whether CyHV-2 can encode circRNAs is still unknown. Here, 10 CyHV-2-derived circRNAs were identified, and the function of circ-udg, a circRNA derived from the CyHV-2 uracil DNA glycosylase (udg) gene, was studied. Although the expression level of circ-udg was lower than that of the parental gene, udg, its expression level was elevated in tandem with the proliferation of CyHV-2 and udg. In vitro experiments confirmed that circ-udg could promote the proliferation of CyHV-2. Moreover, circ-udg could encode a truncated UDG protein consisting of 147-amino-acid residues (termed circ-udg-P147). Both UDG and circ-udg-P147 were found to promote CyHV-2 proliferation, but the promoting effect of circ-udg on CyHV-2 proliferation was attenuated after circ-udg lost the ability to encode circ-udg-P147. Also, circ-udg-P147 could not change the transcription level of the udg gene. Interestingly, the UDG protein level was increased by circ-udg-P147. These results deepen the understanding of the genetic information carried by the genome of CyHV-2 and provide a new target for the treatment of gibel carp bleeding disease caused by CyHV-2. IMPORTANCE The outbreak of C. auratus gibelio gill hemorrhagic disease caused by CyHV-2 brought great losses to the gibel carp industry. Therefore, exploring the interaction between CyHV-2 and host and the molecular mechanism of viral infection is of great significance in preventing and treating the gibel carp gill hemorrhagic disease. Although some progress has been made in the study of CyHV-2, the mechanism of interaction between CyHV-2 and crucian carp is still unclear. In this study, we found that CyHV-2 can encode circRNA to regulate virus replication. Our study provides novel information on CyHV-2 functional genomics, a reference for research into the circRNA of other viruses, and theoretical guidance for preventing and treating gibel carp bleeding disease.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Animais , Doenças dos Peixes/prevenção & controle , Herpesviridae , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Imunidade Inata , RNA Circular/genética , Replicação Viral
9.
Sci Total Environ ; 838(Pt 2): 156072, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598665

RESUMO

Biochar is a widely used antecedent for improving bio­hydrogen production. However, little is known about the impact of biochar-derived dissolved organic matter (DOM) on the performance of fermentative bio-H2 production. Herein, we evaluated the impact of biochar-derived DOM on the fermentation performance of hydrogen-producing microflora. The pyrolysis temperature of biochar affected the DOM composition, with lower pyrolysis temperatures showing more serious inhibition on H2 accumulation. When biochar was pyrolyzed at 500 °C, DOM prolonged the fermentation period and decreased H2 production from 1330.41 mL L-1 to 1177.05 mL L-1 compared to the control group. The xylose utilization in mixed substrate decreased from 29.72% to 26.41%, which is not favorable for practical applications where lignocellulosic biomass is used as a substrate. Otherwise, DOM caused a 6% reduction in microbial biomass accumulation and less soluble metabolites formation. The potential mechanism of DOM inhibiting bio­hydrogen production was verified by identifying an increase in reactive oxygen species (ROS) level (178.2%) and the microbial community shifted to containing fewer hydrogen-producing strains. The finding prompts a more precise design of biochar applications in fermentation systems to alleviate the potential hazards and maximum the fermentation performance, not limited to fermentative hydrogen production system.


Assuntos
Matéria Orgânica Dissolvida , Carvão Vegetal/química , Fermentação , Hidrogênio
10.
Int J Biol Macromol ; 209(Pt A): 1179-1187, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461859

RESUMO

To date, some DNA viruses and single-stranded RNA viruses have been found to generate circRNAs. However, the reports on circRNAs produced by double-stranded RNA viruses are very limited. In this study, Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus belonging to the Reoviridae, was demonstrated to generate viral circRNAs (vcircRNAs) and a vcircRNA_000048 whose sequence corresponds with the region 164-1245 nt on the BmCPV genomic dsRNA S5 segment (GQ294468.1) was validated by PCR, Sanger sequencing, reverse transcription-rolling circle amplification, and Northern blotting. Furthermore, we verified that vcircRNA_000048 translates a micropeptide vsp21 with 21 amino acid residues in an IRES-dependent manner, and vsp21 attenuates the viral replication. These findings provided a novel clue to understanding the regulation of viral multiplication and interaction of reovirus with the host.


Assuntos
Bombyx , Reoviridae , Animais , Bombyx/genética , Interações Hospedeiro-Patógeno , RNA Circular/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Replicação Viral/genética
11.
Front Immunol ; 13: 861007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371040

RESUMO

Circular DNAs derived from single-stranded RNA viruses play important roles in counteracting viral infection. However, whether double-stranded RNA viruses generate functional circular DNAs is still unknown. Using circDNA sequencing, divergent PCR, DNA in situ hybridization and rolling circular amplification, we presently confirmed that in silkworm, Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a double-stranded RNA virus belonging to cypovirus, is prone to produce a BmCPV-derived circular DNA termed as vcDNA-S7. We have also found that vcDNA-S7 formation is mediated by endogenous reverse transcriptase (RT), and the proliferation of BmCPV can be inhibited by vcDNA-S7 in vitro and in vivo. Moreover, we have discovered that the silkworm RNAi immune pathway is activated by vcDNA-S7, while viral small interfering RNAs (vsiRNAs) derived from transcribed RNA by vcDNA-S7 can be detected by small RNA deep sequencing. These results suggest that BmCPV-derived vcDNA-S7, mediated by RT, can serve as a template for the biogenesis of antiviral siRNAs, which may lead to the repression of BmCPV infection. To our knowledge, this is the first demonstration that a circular DNA, produced by double stranded RNA viruses, is capable of regulating virus infection.


Assuntos
Bombyx , Reoviridae , Animais , DNA Circular , Interações Hospedeiro-Patógeno , RNA de Cadeia Dupla/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Reoviridae/fisiologia
12.
Int J Biol Macromol ; 208: 1009-1018, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35381288

RESUMO

ß-Arrestin 2 is known to be a widely distributed adaptor protein in mammals but its function has never been reported in Lepidoptera insects. Herein, the ß-Arrestin 2 (BmArrestin 2) gene from silkworm was cloned and characterized. The spatiotemporal expression level of BmArrestin 2 was highest in the gonads at the 3rd day of 5th instar, whereas the highest and lowest abundance of BmArrestin 2 were identified in the tracheal and testis, respectively. BmArrestin 2 is mainly distributed in the cytoplasm. Furthermore, in BmN cells,overexpression of BmArrestin 2 promoted Bombyx mori nucleopolyhedrovirus (BmNPV) and B. mori cytoplasmic polyhedrosis virus (BmCPV) replication as the increment of the concentration of plasmid transfection, whereas silencing the gene with specific siRNA inhibited viral replication. Replication of BmNPV and BmCPV also was weakened using BmArrestin 2 antiserum as the increment of the concentration. Immunofluorescent staining revealed the invasion of recombinant BmNPV or BmCPV was decreased after blocking endogenous BmArrestin 2. On the other hand, BmArrestin 2 co-localizes with recombinant BmNPV and BmCPV virions in BmN cells. These results suggest that BmArrestin 2 may represent a novel target for antiviral strategies, as it is an adaptor protein that plays a key role in virus replication.


Assuntos
Bombyx , Nucleopoliedrovírus , Reoviridae , Animais , Bombyx/metabolismo , Mamíferos/metabolismo , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Reoviridae/metabolismo , Replicação Viral , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
13.
J Hazard Mater ; 432: 128715, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305418

RESUMO

Microplastics (MPs) and nanoplastics (NPs), as emerging pollutants, are frequently detected in wastewater treatment plants. However, studies comparing the effects of MPs versus NPs on nitrogen removal by activated sludge are rarely reported. Here, the responses of nitrogen removal performance, microbial community and functional genes to MPs and NPs in sequencing batch reactors were investigated. Results revealed that MPs (10 and 1000 µg/L) had no effects on nitrogen removal. While upon exposure to NPs, although low concentration (10 µg/L) of NPs showed no remarkable influence on nitrogen removal, high level (1000 µg/L) of NPs decreased NH4+-N removal efficiency by 24.48% and caused accumulation of NO3--N and NO2--N. These inhibitory probably due to the acute toxicity of NPs to activated sludge, which was reflected by the increasing reactive oxygen species generation and lactate dehydrogenase release. The toxic effects of NPs further declined the relative abundance of nitrifiers (e.g., Nitrospira) and denitrifiers (e.g., Dechloromonas). These negative effects, accompanied by a decrease in abundance of amoA and nxrA genes related to nitrification (30.01% and 65.24% of control) and narG, nirK and nirS genes associated with denitrification (78.59%, 61.39%, and 86.17% of control), directly illustrated the attenuate phenomenon observed in nitrogen removal.


Assuntos
Microbiota , Microplásticos , Reatores Biológicos , Desnitrificação , Microbiota/genética , Microplásticos/toxicidade , Nitrificação , Nitrogênio/análise , Plásticos , Esgotos
14.
J Hazard Mater ; 431: 128547, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220117

RESUMO

Microplastics (MPs), nanoplastics (NPs) and antibiotic resistance genes (ARGs), as emerging pollutants, have been frequently detected in wastewater treatment plants. However, the behavior of phosphorus and ARGs under MP and NP (MP/NP) pressure in biological phosphorus removal (BPR) system is still unknown. This study investigated the effects of MP/NPs on phosphorus removal and ARGs propagation in BPR system. Results showed that MP/NPs had no influence on phosphorus removal, but significantly promoted the amplification of tetracycline resistance genes (TRGs). Moreover, the TRG abundance were more facilitated by MPs than NPs, and the TRGs of efflux pump and enzymatic modification mechanism were mainly enriched. Meanwhile, MP/NPs increased the transmission risk of multiple resistance genes and mobile gene elements (MGEs). Microbial communities demonstrated the main polyphosphate accumulating organisms shifted from Acinetobacter to unclassified_Gammaproteobacteria, which explained why phosphorus removal efficiency was unaffected with MP/NP addition. Correlation analysis revealed there was no significant correlation between ARGs and MGEs (intI1 and intI2), but the abundances of potential hosts of ARGs were significantly increased with MP/NP addition, implying microbial community structure changes rather than gene horizontal transfer was the main factor promoting ARG propagation under MP/NP pressure.


Assuntos
Antibacterianos , Microplásticos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Fósforo , Plásticos
15.
Environ Res ; 206: 112630, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973940

RESUMO

With the acceleration of urbanization, the proportion of surface imperviousness is increasing continuously in cities, resulting in frequent waterlogging disasters. In this context, storm water management, based on the low-impact development (LID) concept, offers an effective measure for the management of urban storm waters. First, the storm water management model (SWMM) was built for a typical cold climate city (Changchun) in China. Next, the two-stage calibrated model was employed to explore the surface runoff and storm sewer control effects of four LID combination plans. Finally, these plans were put through a "cost-benefit" evaluation through an analytic hierarchy process. According to the results, after using four LID plans, the reduction rates of peak runoff exceeded 40% and the problem of overflow load of the storm sewage was significantly mitigated. The infiltration-oriented Plan I proved to be the optimal plan, with the lowest proportions of the overflow nodes and full-load pipe sections in each return period, as well as with maximum overall performance. This study offers technical and conformed methodological support to cold cities for the prevention and control of waterlogging disasters and recycling of rainwater resources.


Assuntos
Chuva , Movimentos da Água , China , Cidades , Clima Frio , Urbanização
16.
Environ Res ; 205: 112457, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875262

RESUMO

In the context of "Peak CO2 emissions & Carbon neutrality", H2 energy, as the green and clean energy, will make an important contribution to the carbon emission reduction and carbon neutralization. Bio-H2 production from organic wastewater achieved not only pollutants removal, but also the H2 energy recovery and carbon emission reduction. In this study, a maltose-preferring producer of Clostridium butyricum NH-02 was investigated for the potential and performance of bio-H2 production from brewery wastewater in batch and semi-continuous fermentation. Appropriate initial pH 7.0 and organic loading of 21,173 mg/L chemical oxygen demand (COD) (2670 mg/L reducing sugar (RS)) stimulated the batch H2 fermentation efficiency with a maximum H2 yield of 1.89 mol-H2/mol-RS and cumulative H2 production of 479.3 mL/L. Comparing to the batch fermentation, semi-continuous fermentation showed significant improvement in H2 productivity and yield. The maximum cumulative H2 yield of 5.21 mol-H2/mol-RS and production of 254.78 mL were obtained with the optimal hydraulic retention time (HRT) at 47 h after a 120 h fermentation. This study demonstrated the potential of H2 production from brewery wastewater with C. butyricum, and a great improvement in H2 production in semi-continuous fermentation.


Assuntos
Reatores Biológicos , Águas Residuárias , Butiratos , Fermentação , Hidrogênio/análise , Maltose
17.
Int J Biol Macromol ; 194: 223-232, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875309

RESUMO

Bombyx mori cypovirus (BmCPV), a member of the family Reoviridae, is a model of Cypovirus, has a 10 segmented double-stranded RNA genome. However, so far, only one viral small peptide vSP27 with negative regulation on viral infection was identified; the mechanisms underlying host-BmCPV interaction are still unknown. Here, we identified that vSP27 was translated from a BmCPV derived circular RNA (circRNA-vSP27). Subsequently, results showed that vSP27 induced generation of ROS activated the NF-κB signaling pathway, induced the expression of antimicrobial peptides, and suppressed BmCPV infection. On the other hand, we identified a nuclear protein Akirin that could hijack vSP27, positively regulate the NF-κB pathway, and lead to inhibiting the viral infection. Altogether, our data suggested that BmCPV derived circRNA-vSP27 with small peptide translation activity may be employed by the host immunity in defense against the BmCPV infection.


Assuntos
Bombyx/virologia , Interações Hospedeiro-Patógeno , NF-kappa B/metabolismo , Peptídeos/genética , RNA Circular , Reoviridae/fisiologia , Proteínas Virais/genética , Animais , Resistência à Doença/genética , Regulação Viral da Expressão Gênica , Peptídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteínas Virais/metabolismo , Viroses/veterinária
18.
J Hazard Mater ; 424(Pt A): 127254, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583154

RESUMO

Bisphenols (BPs) are distributed in worldwide as typical environmental hormones, which potentially harm the ecological environment and human health. In this study, four BPs, i.e., bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, were used as prototypes to identify the intrinsic differences in degradation mechanisms correlated with the molecular structures in peroxydisulfate (PDS)-based advanced oxidation processes (AOPs). Electron transfer was the main way of modified biochar to trigger the heterogenous catalysis of PDS, which can cause the degradation of BPs. Phenolic hydroxyl groups on bisphenol pollutants were considered as possible active sites, and the existence of substituents was the main reason for the differentiation in the degradation efficiency of various bisphenols. Results of ecotoxicity prediction showed that most intermediates produced by the degradation of BPs in the ß-SB/PDS system, which was dominated by the electron transfer pathway, had a lower toxicity than the parent molecules, while the toxicity of several ring cleavage intermediates was higher. This study presents a simple modification scheme for the conversion of biochar into functional catalysts and provides insights into the mechanism of heterogeneous catalytic degradation mediated by modified biochar as well as the degradation differences of bisphenol pollutants and their potential ecotoxicity.


Assuntos
Compostos Benzidrílicos , beta-Ciclodextrinas , Compostos Benzidrílicos/toxicidade , Catálise , Carvão Vegetal , Humanos , Fenóis
19.
Dev Comp Immunol ; 126: 104244, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450127

RESUMO

The mechanism by which infection by Bombyx mori cytoplasmic nucleopolyhedrosis virus (BmCPV) causes autophagy has not been studied in detail. Herein we have observed by electron microscopy that infection with BmCPV causes autophagosome and mitochondrial structure damage in Bombyx mori midgut. In BmN cells infected with BmCPV and expressing eGFP-LC3, fluorescence spots and LC3-II levels increased, suggesting that BmCPV infection causes autophagy. Autophagy inducer rapamycin (Rap) and autophagy inhibitor 3-methyladenine (3-MA) were used to monitor the effects of mitophagy on BmCPV proliferation. It was found BmCPV proliferation to be promoted by mitophagy. Transient transfection experiments in cultured BmN cells showed that mitophagy can be triggered by expression of BmCPV structural protein VP4. Moreover, VP4 caused upregulation of p-Drp1, PINK1 and Parkin proteins in the mitophagy pathway and downregulation of mitochondrial membrane protein Tom20. Furthermore, interaction between VP4 with Tom40 was confirmed by Co-IP, western blot and colocalization experiment, and overexpression of Tom40 reduce the level of mitochondrial autophagy induced by VP4. These results suggested that VP4 induced PINK1-Parkin-mediated mitophagy interacting with Tom40. These findings deepen our understanding of the interaction between BmCPV and silkworm and also provide a molecular target for screening anti-BmCPV drugs.


Assuntos
Bombyx , Reoviridae , Animais , Interações Hospedeiro-Patógeno , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reoviridae/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Mol Ther Nucleic Acids ; 25: 668-682, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589285

RESUMO

Hepatitis B virus (HBV) produces circular RNA (circRNA), whose functions have not yet been clearly elucidated. In this study, a novel circRNA HBV_circ_1 produced by HBV was identified in HBV-positive HepG2.2.15 cells and HBV-related hepatocellular carcinoma (HCC) tissue (HCCT). Microarray analysis of 68 HCCT samples showed that HBV_circ_1 abundance was significantly higher than that in paracancerous tissues. In addition, survival rate of HBV_circ_1-positive patients was significantly lower compared with HBV_circ_1-negative patients. Transient expression indicated that HBV_circ_1 enhanced cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Furthermore, ectopical HBV_circ_1 expression increased tumor size in vivo. HBV_circ_1 was confirmed to interact with cyclin-dependent kinase 1 (CDK1) to regulate cell proliferation. These results suggest that HCC progression may be promoted by interaction of HBV_circ_1 with CDK1. Our data not only showed a novel clue to understand carcinogenesis and progress of HBV-related HCC but also provided a new target for the development of therapeutic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...